Composing, Executing and Sharing Multiscale Applications in an Integrated Environment

Katarzyna Rycerz1, Eryk Ciepiela2, Daniel Harężlak2, Maciej Pawlik2, Tomasz Gubała2,3, Jan Meizner2, and Marian Bubak1,2,3

1AGH University of Science and Technology, Department of Computer Science, Krakow, Poland
2AGH University of Science and Technology, ACC CYFRONET AGH, Krakow, Poland
3Informatics Institute, University of Amsterdam, The Netherlands

\url{http://dice.cyfronet.pl}

\section*{Goal}

- Build an environment for composing, executing and sharing multiscale applications
- Provide the ability to connect software modules to form complex, multiscale simulations
- Support hybrid distributed execution, i.e. different parts of the same application can be executed on various types of e-infrastructures i.e. on a grid (e.g. EGI), HPC (e.g. PRACE) or on a cloud
- Support a variety of possible configurations of multiscale simulations in a unified and non-invasive way

\section*{Tools}

- MAPPER Memory is a semantic-aware persistence store to record metadata about model sand scales
- Multiscale Application Designer is a user-friendly visual composition tool transforming high level MML descriptions into executable GridSpace experiments
- GridSpace Experiment Workbench supports execution and result management of generated experiments on infrastructures via interoperability layers
- Provenance Tracking System supports storing and providing detailed information about experiment execution and its results

\section*{References}

\section*{Acknowledgements}

This research was partially supported by the EU ICT MAPPER project (grant 261507).
The authors thank A.G. Hoekstra, J. Borgdorff, C. Bona Casas, E. Lorenz, M. Ben Belgacem, and B. Chopard.